Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Bioinform Biol Insights ; 17: 11779322231167927, 2023.
Article in English | MEDLINE | ID: covidwho-2290483

ABSTRACT

The rapid and global spread of the novel coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised serious public health concerns, including in Mauritania. We sequenced and analyzed the entire genome of 13 SARS-CoV-2 virus strains isolated from polymerase chain reaction (PCR)-positive symptomatic patients sampled from March 3 to May 31, 2021 to better understand SARS-CoV-2 introduction, propagation, and evolution in Mauritania. A phylogenetic tree using available data from the EpiCoV GISAID database and a variant network with non-Mauritanian sequences were constructed. Variant analysis of the 13 Mauritanian SARS-CoV-2 genome sequences indicated an average mutational percentage of 0.39, which is similar to that in other countries. Phylogenetic analysis revealed multiple spatiotemporal introductions, mainly from Europe (France, Belgium) and Africa (Senegal, Côte d'Ivoire), which also provided evidence of early community transmission. A total of 2 unique mutations, namely, NSP6_Q208K and NSP15_S273T, were detected in the NSP6 and NSP15 genes, respectively, confirming the aforementioned introduction of SARS-CoV-2 in Mauritania. These findings highlight the relevance of continuous genomic monitoring strategies for understanding virus transmission dynamics and acquiring knowledge to address forthcoming sources of infection in Africa.

2.
J Mol Struct ; 1285: 135525, 2023 Aug 05.
Article in English | MEDLINE | ID: covidwho-2291723

ABSTRACT

In the present work, a new series of imidazo[1,2-a]pyrimidine Schiff base derivatives have been obtained using an easy and conventional synthetic route. The synthesized compounds were spectroscopically characterized using 1H, 13C NMR, LC-MS(ESI), and FT-IR techniques. Green metric calculations indicate adherence to several green chemistry principles. The energy of Frontier Molecular Orbitals (FMO), Molecular Electrostatic Potential (MEP), Quantum Theory of Atoms in Molecules (QTAIM), and Reduced Density Gradient (RDG) were determined by the Density Functional Theory (DFT) method at B3LYP/6-31 G (d, p) as the basis set. Moreover, molecular docking studies targeting the human ACE2 and the spike, key entrance proteins of the severe acute respiratory syndrome coronavirus-2 were carried out along with hACE2 natural ligand Angiotensin II, the MLN-4760 inhibitor as well as the Cannabidiolic Acid CBDA which has been demonstrated to bind to the spike protein and block cell entry. The molecular modeling results showed auspicious results in terms of binding affinity as the top-scoring compound exhibited a remarkable affinity (-9.1 and -7.3 kcal/mol) to the ACE2 and spike protein respectively compared to CBDA (-5.7 kcal/mol), the MLN-4760 inhibitor (-7.3 kcal/mol), and angiotensin II (-9.2 kcal/mol). These findings suggest that the synthesized compounds may potentially act as effective entrance inhibitors, preventing the SARS-CoV-2 infection of human cells. Furthermore, in silico, ADMET, and drug-likeness prediction expressed promising drug-like characteristics.

3.
Bioinform Biol Insights ; 16: 11779322221145380, 2022.
Article in English | MEDLINE | ID: covidwho-2195133

ABSTRACT

The emergence of a novel coronavirus that later on rendered a global pandemic, caused desperation within the communities and drove increased interest in exploring medicinal plant-based therapeutics to treat and prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infections. Many medicinal plants have been reported to have antiviral, anti-inflammatory, and immunomodulatory effects that hinder, cure, or ease the symptoms of COVID-19 infection. This exploratory study seeks to dock the active components of Cannabis sativa, a natural plant with several pharmacological and biological properties, with the angiotensin-converting enzyme II (ACE2) receptor. A total of 3 C. sativa active components have been found to bind to the ACE2 protein active site and could inhibit spike binding, although they do not compete directly with the receptor-binding domain (RBD) of SARS-CoV-2. 6-Prenylapigenin, cannabivarin (CBN-C3), and Δ8-tetrahydrocannabinolic acid-A (Δ8-THCA) have a greater affinity (-8.3, -8.3, and -8.0 kcal/mol, respectively) and satisfactory interaction with ACE2 than its inhibitor MLN-4760 (-7.1 kcal/mol). These potential drugs with higher affinity for the ACE2 receptor and adequate absorption, distribution, metabolism, excretion, and toxicity (ADMET) values are candidates for treating or preventing SARS-CoV-2 infections. In vitro and in vivo investigations are needed to evaluate further the efficacy and toxicity of these hit compounds.

4.
Microbiol Resour Announc ; 11(7): e0025622, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1891741

ABSTRACT

We explored the gut microbiome composition in four Moroccan patients with coronavirus disease 2019 (COVID-19) during hospitalization and treatment, using 16S rRNA gene amplicon metataxonomic profiling, and compared it with that in four healthy severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-free control subjects.

5.
Front Public Health ; 9: 690462, 2021.
Article in English | MEDLINE | ID: covidwho-1394837

ABSTRACT

The COVID-19 pandemic and the draconian measures applied to limit its spread have accelerated the process of digitalizing many activities, including those within the health sector. In Morocco, a developing country in northern Africa, digital health has been deployed extensively, and in a remarkable way, to support the management of the current health crisis. Morocco is taking significant measures to become a key player in the process of achieving Sustainable Development Goals (SDG) goal 3. The government has comprehensively integrated digital technology throughout its coordinated containment and mitigation processes. These processes encompass testing and diagnostics; virus genomic surveillance; telecare of suspected and chronic patients; COVID-19 patient contact tracing and tracking; a laboratory information system for medical material dispatching, biological sample collection, and data processing nationwide; and smart vaccination management. Moreover, the pace of amending legislation for enabling efficient telemedicine practice has been achieved at a record-breaking. The successful implementation of all of these digital health strategies testify to the effectiveness of digitalization for managing the health aspects of the pandemic and for the future development of health systems in Morocco and in the African continent, where digital health and telemedicine is set to become the cornerstone of medical practice.


Subject(s)
COVID-19 , Telemedicine , Contact Tracing , Humans , Pandemics , SARS-CoV-2
6.
Biomed Res Int ; 2021: 6685840, 2021.
Article in English | MEDLINE | ID: covidwho-1177610

ABSTRACT

SARS-CoV-2 coronavirus uses for entry to human host cells a SARS-CoV receptor of the angiotensin-converting enzyme (ACE2) that catalyzes the conversion of angiotensin II into angiotensin (1-7). To understand the effect of ACE2 missense variants on protein structure, stability, and function, various bioinformatics tools were used including SIFT, PANTHER, PROVEAN, PolyPhen2.0, I. Mutant Suite, MUpro, SWISS-MODEL, Project HOPE, ModPred, QMEAN, ConSurf, and STRING. All twelve ACE2 nsSNPs were analyzed. Six ACE2 high-risk pathogenic nsSNPs (D427Y, R514G, R708W, R710C, R716C, and R768W) were found to be the most damaging by at least six software tools (cumulative score between 6 and 7) and exert deleterious effect on the ACE2 protein structure and likely function. Additionally, they revealed high conservation, less stability, and having a role in posttranslation modifications such a proteolytic cleavage or ADP-ribosylation. This in silico analysis provides information about functional nucleotide variants that have an impact on the ACE2 protein structure and function and therefore susceptibility to SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Mutation, Missense/genetics , Algorithms , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Computational Biology , Computer Simulation , Humans , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
7.
Interdiscip Perspect Infect Dis ; 2021: 6655380, 2021.
Article in English | MEDLINE | ID: covidwho-1140375

ABSTRACT

COVID-19 is a pandemic infection of the respiratory system caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral ribonucleic acid (RNA) was found in many parts of the COVID-19 patients including the stool, suggesting a potential interaction with the host's gut microbiome. The gut microbiome also plays major roles in immunity and inflammation. It also impacts pulmonary functions through the gut-lung axis. There have been recent reports of the importance of the host microbiome in infection and pathogenicity. The understanding of the gut and lung microbiomes would open the gate to new therapeutic approaches.

8.
Bioinform Biol Insights ; 15: 1177932221999428, 2021.
Article in English | MEDLINE | ID: covidwho-1136171

ABSTRACT

Over the last decade, it has become increasingly apparent that the microbiome is a central component in human well-being and illness. However, to establish innovative therapeutic methods, it is crucial to learn more about the microbiota. Thereby, the area of metagenomics and associated bioinformatics methods and tools has become considerable in the study of the human microbiome biodiversity. The application of these metagenomics approaches to studying the gut microbiome in COVID-19 patients could be one of the promising areas of research in the fight against the SARS-CoV-2 infection and disparity. Therefore, understanding how the gut microbiome is affected by or could affect the SARS-CoV-2 is very important. Herein, we present an overview of approaches and methods used in the current published studies on COVID-19 patients and the gut microbiome. The accuracy of these researches depends on the appropriate choice and the optimal use of the metagenomics bioinformatics platforms and tools. Interestingly, most studies reported that COVID-19 patients' microbiota are enriched with opportunistic microorganisms. The choice and use of appropriate computational tools and techniques to accurately investigate the gut microbiota is therefore critical in determining the appropriate microbiome profile for diagnosis and the most reliable antiviral or preventive microbial composition.

9.
Expert Rev Mol Diagn ; 21(2): 141-160, 2021 02.
Article in English | MEDLINE | ID: covidwho-1087610

ABSTRACT

INTRODUCTION: SARS-Cov-2 first appeared in Wuhan, China, in December 2019 and spread all over the world soon after that. Given the infectious nature ofSARS-CoV-2, fast and accurate diagnosis tools are important to detect the virus. In this review, we discuss the different diagnostic tests that are currently being implemented in laboratories and provide a description of various COVID-19 kits. AREAS COVERED: We summarize molecular techniques that target the viral load, serological methods used for SARS-CoV-2 specific antibodies detection as well as newly developed faster assays for the detection of SARS-COV 2 in various biological samples. EXPERT OPINION: In the light of the widespread pandemic, the massive diagnosis of COVID-19, using various detection techniques, appears to be the most effective strategy for monitoring and containing its propagation.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/trends , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/trends , COVID-19/diagnosis , Antibodies, Viral/immunology , Biosensing Techniques , CRISPR-Cas Systems , Clinical Laboratory Techniques , Humans , Immunoassay , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Laboratories , Radiography, Thoracic , Reagent Kits, Diagnostic , Reverse Transcriptase Polymerase Chain Reaction , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL